Seedborne Diseases and Sanitation

Sally Miller
Department of Plant Pathology
What Causes Disease in Plants?

- Fungi
- Oomycetes
- Bacteria
- Viruses
- Viroids
- Nematodes
- Parasitic Plants

Presentation Credit: Dr. Sally Miller, The Ohio State University
Fungi That Attack Plants

- Fungi (molds) are microscopic plant-like organisms
- Most fungi are NOT plant pathogens
- Grow vegetatively by production of long filaments called *hyphae*
- Most produce spores
- Many also produce specialized structures (pycnidia, ascocarps, sclerotia, etc.) for reproduction and/or survival

Spores of *Alternaria* (early blight)

David Malloch, Univ. Toronto

Presentation Credit: Dr. Sally Miller, The Ohio State University
Fungi That Attack Plants

- Fungi (molds) are microscopic plant-like organisms
- Most fungi are NOT plant pathogens
- Grow vegetatively by production of long filaments called hyphae
- Most produce spores
- Many also produce specialized structures (pycnidia, ascocarps, sclerotia, etc.) for reproduction and/or survival

Pycnidium and spores of Septoria

Presentation Credit: Dr. Sally Miller, The Ohio State University
Oomycetes That Attack Plants

- “Fungal-like” organisms related to diatoms and brown algae
- Reproduce in water ("water molds")
 - Produce swimming spores ("zoospores")
- Produce specialized structures for long-term survival (oospores)

Presentation Credit: Dr. Sally Miller, The Ohio State University

Phytophthora oospores

David Malloch, Univ. Toronto
Bacteria That Attack Plants

- Tiny (<5 µm) single cells (much smaller than fungi and oomycetes)
- Most bacteria are not pathogens
- Cause spots, blights, wilts and soft rots

http://www.cellsalive.com/cells/3dcell.htm

Presentation Credit: Dr. Sally Miller, The Ohio State University
Viruses & Viroids That Attack Plants

- Viruses are particles consisting of protein plus RNA or DNA
- Viroids are RNA particles
- Moved from plant to plant by insects - "insect transmission"
- Others moved around in plant sap - "sap transmitted"

Presentation Credit: Dr. Sally Miller, The Ohio State University
Nematodes That Attack Plants

- Small, wormlike organisms
- Most are not plant pathogens
- Plant pathogenic nematodes have a needle-like stylet to withdraw nutrients from plants
- Have multiple life stages
- All species lay eggs

Presentation Credit: Dr. Sally Miller, The Ohio State University
Parasitic Plants Attack Other Plants

• Plants that are parasites of other plants, e.g.
 – Dodder
 – Witches’ broom
 – Broomrape
 – Indian paintbrush (hemiparasite)
• Reproduce by seeds

Presentation Credit: Dr. Sally Miller, The Ohio State University
How and Why Plants Become Diseased

Presentation Credit: Dr. Sally Miller, The Ohio State University
Plant Disease is Relatively Rare

<table>
<thead>
<tr>
<th>Susceptible plant</th>
<th>Virulent pathogen</th>
<th>Environment favors pathogen</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Presentation Credit: Dr. Sally Miller, The Ohio State University
How to Minimize Plant Disease

• Plant
 – Use genetically resistant plants
 – Reduce plant stress; grow robust plants
 – Provide balanced water and nutrition; appropriate light

• Environment
 – Manipulate environment to favor plant, not pathogen
 • Moisture management; temperature

• Pathogen
 – Avoid pathogen build-up
 • Sanitation, crop rotation, exclusion

Presentation Credit: Dr. Sally Miller, The Ohio State University
Seedborne Diseases - Vegetables

• Not all groups of pathogens or pathogens within a group are seedborne
• Problems vary by crop
• Most common seedborne pathogens of vegetables:
 – Bacteria
 – Viruses
 – Fungi

Presentation Credit: Dr. Sally Miller, The Ohio State University
SOME EXAMPLES OF COMMON SEEDBORNE DISEASES OF VEGETABLES
Septoria Leaf Spot or Blight

- Favored by rainy conditions
- Spots appear on leaves and stems at any stage of plant growth
- Tiny, dark fruiting bodies in lesions
- Plants may lose leaves
- No fruit symptoms
- Also on celery, lettuce, parsley, celeriac

Presentation Credit: Dr. Sally Miller, The Ohio State University
Anthracnose - *Colletotrichum*

- Favored by warm, wet weather
- Symptoms mainly on fruit
- Symptoms may occur on both ripe and green fruit

Presentation Credit: Dr. Sally Miller, The Ohio State University
Seedborne Diseases Caused by Bacteria

• Favored by rainy, humid conditions
 – Temperature optima vary

• Localized or systemic in plants
 – Localized bacteria – external on seed
 – Systemic bacteria – internal in seed

• Affect all above-ground plant parts
 – Systemic bacteria also in roots
 – Fruit infections lead to seed infection/infestation

Presentation Credit: Dr. Sally Miller, The Ohio State University
Bacterial Spot

Presentation Credit: Dr. Sally Miller, The Ohio State University
Black Rot of Crucifers

Presentation Credit: Dr. Sally Miller, The Ohio State University
Cucurbit Angular Leaf Spot - *Pseudomonas*
Cucurbit Bacterial Spot - *Xanthomonas*

Presentation Credit: Dr. Sally Miller, The Ohio State University
Seedborne Viruses: Tomato Mosaic Virus

• Affects foliage and fruits
 – Mosaic, leaf distortion, stunting

• Virus very stable – survives a long time (years)

• External seed infestation

Presentation Credit: Dr. Sally Miller, The Ohio State University
Minimizing Seedborne Diseases

• Keep plants healthy
• Scout crop routinely
• If a disease appears, get a diagnosis
 – OSU Vegetable Pathology Lab
 – County Extension office
• Rogue out diseased plants early
• May need fungicide treatments
• Treat seeds with a sanitizing treatment

Presentation Credit: Dr. Sally Miller,
The Ohio State University
Seed Treatments

• Clorox treatment very effective for external infestations of any pathogen type
 – Clorox treatment: 25 oz clorox:100 oz water + 1 tsp surfactant for 1 minute, followed by 5 minutes rinse in running tap water
 – Kills bacteria, viruses and fungi on seed surface
 – May not kill internal pathogens

• If organic, check with certifier for chlorine use

Presentation Credit: Dr. Sally Miller,
The Ohio State University
Seed Treatment with Hot Water

• Kills internal and external plant pathogenic bacteria
 – Does not kill plant pathogenic viruses or fungi
 – Does not kill human pathogens

• Allowed in organic systems

• We now recommend following hot water treatment with Clorox treatment if feasible

Presentation Credit: Dr. Sally Miller,
The Ohio State University
Water Bath Temperatures and Treatment Times

<table>
<thead>
<tr>
<th>Seed</th>
<th>°F</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brussels sprouts, eggplant, spinach, cabbage, tomato</td>
<td>122</td>
<td>25</td>
</tr>
<tr>
<td>Broccoli, cauliflower, cucumber*, carrot, collard, kale, kohlrabi, rutabaga, turnip</td>
<td>122</td>
<td>20</td>
</tr>
<tr>
<td>Mustard, cress, radish</td>
<td>122</td>
<td>15</td>
</tr>
<tr>
<td>Pepper</td>
<td>125</td>
<td>30</td>
</tr>
<tr>
<td>Lettuce, celery, celeriac</td>
<td>118</td>
<td>30</td>
</tr>
</tbody>
</table>

* Cucurbit seeds may be damaged by hot water treatment

Presentation Credit: Dr. Sally Miller, The Ohio State University
Hot Water and Chlorine Treatment of Vegetable Seeds to Eradicate Bacterial Plant Pathogens

Sally A. Miller
Melanie L. Lewis Ivey

One of the ways plant pathogens are introduced into a crop is on seeds. Bacterial pathogens are particularly notorious for this means of dissemination. In general, the earlier a pathogen comes in contact with the crop, the greater the potential for a serious disease problem to develop. This is why it is very important to start with “clean” seed. Clean seed can be obtained by applying one of the treatments described below to kill bacterial pathogens on and/or within the seed.

When treating vegetable seeds it is critical to follow the instructions exactly, as seeds may be damaged by the treatment and/or the pathogen may not be completely eliminated. In addition, old or poor quality seed can be injured by seed treatments. Therefore, it is recommended that a small sample be treated and tested for germination (see method below) prior to treating the entire seed lot. Treatments should be done on raw seed only, since the treatment will destroy any seed pelleting and will wash off any fungicide that may have been applied to the seed. If fungicide treated seeds are used, the fungicide washed off must be disposed of properly. After the treatment, seed may be treated with Thiram to prevent damping-off caused by various soilborne fungi.

Hot Water Treatment

Properly used, hot water treatment kills most bacterial disease-causing organisms on or within seed. This treatment is suggested for seeds of eggplant, pepper, tomato, carrot, spinach, lettuce, celery, cabbage, turnip, radish, and other crucifers. Seeds of cucurbits (squash, gourds, pumpkins, watermelons, etc.) can be damaged by hot water and thus should not be treated.

Instructions

A. The following equipment and supplies are needed to hot water treat vegetable seed.

- Water bath (preferably two: one for pre-warming and one for treatment; Sources: Fisher Scientific Co., Thomas Scientific, VWR Scientific)
- Thermometer
- Cotton cloth, cotton bags, or nylon bags
- Screen for seed drying

Presentation Credit: Dr. Sally Miller, The Ohio State University
How to Test Seed Germination

• Mix seeds in each seed lot and count out 50 seeds per seed lot

• Hot water- or Clorox-treat 1/2 of the seeds exactly as described

• After treated seeds have dried, plant the two groups of seeds separately in flats containing planting mix

• Allow the seeds to germinate and grow until the first true leaf appears

Presentation Credit: Dr. Sally Miller, The Ohio State University
Testing Seed Germination......

• Count seedlings in each group separately

• Determine the % germination in each group
 \[
 \frac{\# \text{ seedlings emerged}}{\# \text{ seeds planted}} \times 100
 \]

• Compare % germination in each group
 – should be within 5% of each other

Presentation Credit: Dr. Sally Miller, The Ohio State University
Seed Treatment Cautions

• Use new, high quality seed

• Treat a small sample first and test for germination

• Treat close to time of planting or distribution (within weeks)

• Treat only once

Presentation Credit: Dr. Sally Miller, The Ohio State University
For More Information on Vegetable Diseases and Management

• Ohio Veggie Disease News
 – u.osu.edu/miller.769

• Vegetable Disease Facts
 – u.osu.edu/vegetablediseasefacts/

• VegNet Newsletter
 – u.osu.edu/vegnetnews

• Twitter
 – @OhioVeggieDoc